RIEMANNIAN GEOMETRY
 EXCERCISE 4

1. Let M be a smooth manifold. Find a (nontrivial) affine connection on M via using "partition of unity".
2. Let M be a smooth manifold with an affine connection ∇. Let $X, Y \in \Gamma(T M)$. Let $U \subset M$ be an open subset. Prove that if $Y_{\left.\right|_{U}}=0$, then $\left(\nabla_{X} Y\right)_{\left.\right|_{U}}=0$.
3. (Covariant derivatives of tensor fields via parallel transport) Recall that for an isomorphism $\varphi: V \rightarrow W$ between two vector spaces V and W, there is an adjoint isomorphism

$$
\varphi^{*}: W^{*} \rightarrow V^{*}
$$

between their dual spaces. For $\alpha \in W^{*}$, we have

$$
\varphi(\alpha)(v):=\alpha(\varphi(v)), \quad \forall v \in V
$$

Then, for any $v_{i} \in V, \alpha^{j} \in V^{*}$, we define
$\widetilde{\varphi}\left(v_{1} \otimes \cdots \otimes v_{r} \otimes \alpha^{1} \otimes \cdots \otimes \alpha^{s}\right)=\varphi\left(v_{1}\right) \otimes \cdots \otimes \varphi\left(v_{r}\right) \otimes\left(\varphi^{*}\right)^{-1}\left(\alpha^{1}\right) \otimes \cdots \otimes\left(\varphi^{*}\right)^{-1}\left(\alpha^{s}\right)$.
By linearity, we can extend $\widetilde{\varphi}$ to be defined on all (r, s)-tensor, $\otimes^{r, s} V$, over V. This defines an isomorphism

$$
\widetilde{\varphi}: \otimes^{r, s} V \rightarrow \otimes^{r, s} W
$$

Let M be a smooth manifold with an affine connection ∇. Let $c: I \rightarrow M$ be a smooth curve in M with $c(0)=p \in M$ and $\dot{c}(0)=X_{p} \in T_{p} M$. Recall that the parallel transport

$$
P_{c, t}: T_{c(0)} M \rightarrow T_{c(t)} M
$$

is an isomorphism. As described above, we can extend it to be an isomorphism

$$
\widetilde{P}_{c, t}: \otimes^{r, s} T_{c(0)} M \rightarrow \otimes^{r, s} T_{c(t)} M .
$$

For any $A \in \Gamma\left(\otimes^{r, s} T M\right)$, we define

$$
\nabla_{X_{p}} A:=\lim _{h \rightarrow 0} \frac{1}{h}\left(\widetilde{P}_{c, h}^{-1} A(c(h))-A(p)\right) .
$$

Let $Y \in \Gamma(T M), w, \eta \in \Gamma\left(T^{*} M\right)$. Consider the (1,2)-tensor filed $K:=Y \otimes w \otimes \eta$.
(i) Show that

$$
\nabla_{X_{p}} K=\nabla_{X_{p}} Y \otimes w \otimes \eta+Y \otimes \nabla_{X_{p}} w \otimes \eta+Y \otimes w \otimes \nabla_{X_{p}} \eta .
$$

(ii) Let $C: \Gamma\left(\otimes^{1,2} T M\right) \rightarrow \Gamma\left(\otimes^{0,1} T M\right)$ be the contraction map that pairs the first vector with the first covector. For example, $C K=w(Y) \eta$. Show that

$$
\nabla_{X_{p}}(C K)=C\left(\nabla_{X_{p}} K\right) .
$$

